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Abstract Gutzwiller’s semiclassical quantization scheme for the trace of Green’s function is 
applied to the periodic Toda chain. We obtain a set of algebraic equations that determine the 
energy levels arising fmm a special p iod ic  orbit, namely (he single cnmd.4 wave solution, Our 
formulae show a simple dependence on the number of p;udcles N in the chain. N merely occurs 
as a parameter, We perform the soliton limit of ow eqdm and get a semiclassical coueuim 
to hrst order in h to ule dispersion relation E = E ( p )  of a soliton on the infinite chain which 
is in remarkable agreement with the Bethe w t z  result. The classical data which enter into 
the aemic!assical quantization formula are of interest in their own right. We give a “plete 
treatment of the linear stability analysis of a single cnoidal wave and also some new expressions 
for its dispersion relation which expresses the frequency Y as a function of the wavenumber k .  

1. Introduction 

The Toda chain [l] is a chain of identical particles with exponential interaction between 
nearest neighbours. Supplied with periodic boundary conditions it is an interesting prototype 
OS an integrable N-particle mechanical system. 

The integrability of the classical system was proved in t2-41, where N independent 
integrals of the motion were derived. The decisive step towards a complete solution of the 
initial value problem [5-71 was done in [8,9], where the authors introduced new variables 
which also made it possible to derive the action-angle variables of the system [lo]. The 
general solutions of the equations of motion are the so-called multi-cnoidal wave solutions 
which can be expressed in terms of the Riemann theta function [ll]. They may be imagined 
as ‘nonlinear superpositions’ of single cnoidal waves. 

The integrability of the quantum Toda chain was proved in [12]. However, in contrast 
to other integrable systems the (coordinate) Bethe ansatz does not apply because of the finite 
decay length of the potential. Nevertheless, and quite surprisingly, the asymptotic Bethe 
ansatz proposed by Sutherland [13] yields the correct ground-state energy and excitation 
spectrum of the infvlite chain, and thus also the correct classical limit. Proposed originally 
as an approximation for low densities, when the system spends most time in regions of the 
phase space where all particles are well separated, it is still valid for densities of the order 
of unity 1141. 

The understanding of the fnite periodic system, where the Bethe ansatz equations Sail 
to be exact 1151, was pioneered by Gvtzwiller [16,17], who was successful in transferring 
the canonical transformation of Kac and van Moerbeke [8,9] into quantum mechanics. 
Gutzwiller’s approach makes use of the explicit eigenfunctions of the problem. These are 
quite difficult to handle, and therefore Gutzwiller only investigated the cases of three and 
four particles, although, in principle, his results can be generalized to arbitrary N. 
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Wavefunctions may be avoided if one uses the quantum inverse scattering method 
(QISM). This was done by Gaudin [181, Sklyanin [19] and more recently by Pasquier 
and Gaudin [ZO], who borrowed methods from the theory of integrable statistical systems. 
Sklyanin rederived the integral equations for the elementary excitations of the infinite chain 
which were known from the asymptotic Bethe ansatz. He also gave an elegant account of 
the classical periodic system using the classical R-matrix formalism. 

In spite of the deep insight into the finite quantum problem which was gained by the work 
of Gutzwiller, Gaudin and Sklyanin, there is still no effective way to compute the spectrum 
explicitly. This is probably the reason why the authors of [21-231 used conventional 
algorithms, starting directly with the Hamiltonian, in their numerical calculations for chains 
up to N = 6 particles. The difficulties in applying Gutzwiller’s results numerically were 
also described in [151. Hence, it is still desirable to derive effective, practicable methods, 
and, among these, semiclassical approximations are promising. 

It is not possible to apply the standard WKB approximation to the periodic Toda chain, 
since no coordinate system in position space is known which separates Schradinger’s 
equation [241. The action variables are known [lo], however, and therefore the Einstein- 
Brillouin-Keller (EBK) quantization procedure [25] may be applied. This has been done 
in [15,22,23], but it is also numerically quite involved for large N, since there is no 
explicit formula expressing the Hamiltonian in terms of the action variables. Hence the 
present paper relies on Gutzwillwer’s trace formula [24,26] which is used preferably in 
quantizing chaotic motions. We follow the account of Dashen, Hasslacher and Neveu 
[271, who adapted Ctutzwiller’s method to field theory, and applied it to the infinite sine. 
Gordon system. In actual fact, the first attempt on the quantum Toda chain [28] was in 
this direction. Unfortunately, however, the author failed in at least two aspects when he 
calculated the classical input data for the formalism. As will become evident in section 4, 
an incorrect stationary phase condition was applied. Furthermore it was assumed that the 
stability angles agree with those of the chain at rest. This is only hue for a soliton on 
the infinite chain and only to lowest order in 1/N, but not for a cnoidal wave on a finite 
periodic chain, as will be shown in sections 5 and 6. 

The trace formula is a semiclassical approximation to the trace of Green’s function 
which is obtained by replacing the propagator with its semiclassical approximation. As 
Gutzwiller pointed out [XI, to first order in R only the classical periodic orbits contribute to 
the trace. To compute the whole specmm of a given mechanical system one is faced with 
the difficult problem of classifying all classical periodic orbits. If they are merely available 
in part, then only a part of the spectrum is obtained 1241. In the present paper we present a 
set of algebraic equations for the energy levels arising from a particular family of periodic 
orbits-the single cnoidal wave solutions. 

Our result should be of general interest as one of the relatively few examples where the 
Gutmiller trace formula could be explicitly exploited. Because of the complex structure of 
the periodic orbits in phase space, only very simple few-particle systems, like billiards or the 
anisotropic Kepler problem, have been investigated in the context of quantizing classically 
chaotic systems. In field theory, on the other hand, one usually deals with systems that have 
an infinite number of degrees of freedom (see 17.91, for example). In the present paper, in 
contrast, an N-particle system is treated successfully. 

In the soliton limit, i.e. when the classical chain turns into an infinite chain bearing a 
single soliton, it is on first sight not at all clear how to utilize the semiclassical spectrum. 
In contrast to the sineGordon system [U] there remains no discrete part of the spectrum 
which, in the language of particle physicists, could be interpreted as a mass spectrum of 
elementary particles in their rest frame. In [27] the authors find the mass corresponding 
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to the kink solution of the sineGordon system and a whole mass spectrum corresponding 
to the breather. But both kink and breather solutions are different in nature to the Toda 
soliton. The kink is a topological soliton, which means it has a non-zero excitation energy 
even in the classical case. ?he breather. on the other hand, is non-topological, but can 
be interpreted as a bound state of two kinks. In comparison to the Toda soliton it has an 
internal degree of freedom, which gives rise to the mass spectrum when quantized. In the 
language of particle physics the Toda soliton must be understood as a massless particle. 
This might correspond to the fact that there is no classical Toda solitons at rest. That is to 
say, there is a finite lower limit for the velocity of the Toda soliton. 

In the present paper a semiclassically corrected dispersion relation, E = E ( p ) ,  for 
the soliton on the infinite chain is proposed. This has become possible, since we found 
an expression which can be interpreted as the semiclassically corrected momentum of a 
soliton. We compare the semiclassical dispersion relation, E = E(p) ,  of the soliton with 
the one following from the asymptotic Bethe ansatz [14] or, equivalently, from the QrsM 
[ 191. It is also compared with the dispersion relation following from a different semiclassical 
approach that is based on the time-dependent variational principle 1301. Indeed, one of the 
motivations when we first started this work was to find out whether the two semiclassical 
methods would lead to the same results. The answer is negative. 

In section 2 we elucidate the semiclassical 
quantization formula in [27] and explain how to obtain semiclassical corrections to the 
momentum of a soliton. In the following four sections which form the main part of our 
paper we calculate the classical data that enter into the semiclassical quantization formula. 
These are the energy and action per particle of a single cnoidal wave and the stability angles 
of the corresponding linear stability problem. For all this data the soliton limit is carried out 
in section 6. The boundw conditions are handled with special care, for it was a careless 
treatment of the boundary conditions that caused a subtle mistake in [28] (see section 4, 
below). Physically, it is appropriate either to fix the pressure or to fix the length of the chain. 
It will prove to be possible to switch between these boundary conditions by means of a scale 
symmetry of the Lagrangian. Our account starts in section 2 with the general solution of the 
periodic problem in terms of theta functions [.5,7]. It is analogous to the treatment of the 
periodic KdV equation according to Dubrovin [I I], and leads to a set of algebraic relations 
connecting the parameters of the multi-cnoidal wave solutions with each other, as well as 
with the length parameter Al of the system. We call these relations dispersion relations. 
From the general formula we derive new expressions for the dispersion relation of a single 
cnoidal wave in section 4, which are simple and beautiful and thus of their own worth. The 
complete treatment of the hear stability analysis of a single cnoidal wave in section 5 may 
also be of interest outside the context of semiclassical quantization. Finally, in section 7 
the classical data have been used to perform the semiclassical quantization procedure. The 
semiclassically corrected dispersion relation of the soliton is discussed in detail, whereas a 
more detailed discussion of the periodic few-particle systems is postponed to a forthcoming 
publication 1311. 

The paper is organized as follows. 

2. Semiclassical quantization 

The energy levels ej of a quantum system with Hamiltonian H may be obtained as poles 
of the analytic continuation of the trace of Green's function 
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In [27] a semiclassical approximation to R(E) is obtained in three steps. In the first step 
the propagator (41 exp(-iHt/fi)lq') is replaced by its semiclassical approximation [32]. In 
the second the trace of the semiclassical propagator is analysed and in the K i d  the time 
integral in (2.1) is calculated by stationary phase approximation. The second step is crucial. 
In it, it turns out that only periodic orbits contribute to the trace [26]. 

Although the so-called trace formula is also favoured for the quantization of chaotic 
motions [33], no naive use is possible, because in general it fails to converge on the real 
axis. This has been the subject of recent discussions, and much progress has been made 
[34,35]. 

In the case of the integrable systems however, the result presented in [27] seems now 
to be well accepted [29]. It is 

The expression on the right-hand side is a sum over all periodic orbits (index n )  with period 
T and a sum over contributions arising from the fluctuations around the periodic orbits 
(index k ) .  It is entirely determined by the following classical data: 

(i) S., the action per period; 
(ii) en,* := - C,(k, + 1/2)hqe,=, the sum over the stability angles qn.or (k will turn out 

(iii) e,, a discrete phase factor depending on the number of critical points OF the periodic 

(iv) An, a factor depending on the continuous symmetries of the corresponding orbit. 
In [29] it is shown how to calculate the stationary phase approximation to (2.2) as we 

to be a vector of quantum numbers with the components kw); 

orbit in  phase space; and 

need it for the Toda chain. 

R ~ ( E )  - - e x p l i ( ~ ( r ) + ~ r + ~ ~ ( r ) - - ) / h ) ) - ' .  (2.3) 
k 

This formula is valid in the centre-of-mass system. The centre-of-mass motion can be 
separated by using the methods developed recently by Creagh and Littlejohn [36]. It turns 
out to be treated exactly within the frame of semiclassical quantization. 

The right-hand side of equation (2.3) is the contribution to RS(&) arising from every 
family of periodic orbits. We suppressed a subscript labelling the different families, because 
only a particular one will be considered in the present paper. It is the family of single 
cnoidal wave solutions which correspond to the most degenerate one-dimensional ton in 
phase space. These are suspected to give relevant contributions to the semiclassical density 
of states [37,38]. Note that in deriving (2.3) the sum over repeated traversals of orbits with 
basic period z for one traversal has already been performed. 

It is amusing that equation (2.2) can be connected to the work of three different authors 
leading to three different quantization conditions [26,29,39]. The result depends on whether 
or not the sum over stability exponents & is included in the stationary phase condition 
required to calculate the time integral in (2.1). The classical input data, however, agree for 
all these formulae. They have been listed above. Also, for the Toda chain they will be 
calculated in the following sections. 

A comparison between the different quantization formulae will be given elsewhere 1311. 
Here we rely on the formulae given by [27-291 for several reasons: they permit a satisfactow 
physical interpretation; they have been applied successfully to the sine-Gordon system, and 
they allow for a clear regularization procedure in the soliton limit of the Toda chain. 
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We now return to the discussion of equation (2.3). The parameter 8 in (2.3) is a discrete 
phase connected to the number 4u of critical points on a basic orbit by 4u = ZO/hrr. RI(&) 
has poles at 

S(r)  +Er + &(r) = (n + u)2nh. (2.4) 

The period r is determined as a function of E by the stationary phase condition leading to 
(2.3), 

- d,S = E + d&(r) = E. (2.5) 

Here we abbreviated the derivative with respect to r as d,. E is the classical energy as a 
function of the period r .  Note that the last equation is only correct if the Hamiltonian does 
not depend explicitly on r .  This may occur and is discussed in section 4. We combine 
(2.4) and (2.5) to get a parametric representation of the energy as a function of the quantum 
number n: 

(2.6) E = E(r) - d& 

(2.7) 

Regarding the definition of ek, the physical interpretation is as follows. Equations (2.6) 
and (2.7) describe the energy levels corresponding to a cnoidal wave with period r in the 
presence of phonons with energies (k. 3. I/Z)hd,q.. The vector k indicates how many 
phonons of each energy are excited. For k = 0 we get the energy levels corresponding 
to a cnoidal wave in the absence of phonons. But even then the zero-point motion of the 
phonons renormalizes the cnoidal wave energies. 

We have divided equation (2.7) by N to indicate how the soliton Limit works. We 
assume that there are no phonons excited. Suppose further for a moment that U = 0 on the 
left-hand side of (2.7). then the left-hand side is equal to p,, := n2nhlN (the momentum of 
a free particle on a ring of length N ) .  In the thermodynamic limit N --f CO, p,, turns into a 
continuous variable p .  p does not vanish if R + 0, since the range of p is unbounded. In 
the soliton Limit which includes the thermodynamic limit and is described in section 6, the 
first term on the right-hand side of (2.7) tums into the well known momentum of a soliton. 
The second term remains finite for every t and is proportional to 71. Note that in (2.6) and 
(2.7) r merely plays the role of the curve parameter for the curve E = E @ ) .  This curve can 
be reparamehized in an arbitrary manner. In the soliton limit it will prove to be convenient 
to use the soliton parameter CY which will be introduced in section 6 whereby (2.7) will 
become the form p = P,I(CY) +hAp(a) .  Analoguously, if we subtract the vacuum energy 
EO in (2.6) we get an equation of the form E - E O  = E(cY)  +RAE(cY).  

It is tempting to interpret these two equations as the semiclassically corrected dispersion 
relation of a soliton. They are investigated in section 7. 

3. General solution of the periodic N-particle problem 

The Toda chain [I], as we conceive it physically, is a chain of identical particles connected 
by nonlinear springs. In dimensionless units (see [ 141, for example) these springs are defined 

~~ 

by the potential 

(10;) = e-(’-!) + x - i - I 
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where 1 is the equilibrium length of the free spring. If we consider N particles at positions 
x", n = 1. . . . , N ,  and define XN+I := x t  + N1+ Al with A1 arbitrary, the total potential 
energy of the quasi-periodic chain of length NI + A1 is 

As usual, we will consider the variables q. := x. - (n - 1)l instead of x.. Furthermore we 
introduce the distances r. := qn+t - qn and the shifted potential 

(3.3) W ( x )  := U ( x  + I )  =e-'+x - 1. 

As a result the Lagrangian of the N-particle quasi-periodic system is 

(3.4) 

AI is the total elongation of the chain and is a parameter of the system, not a dynamical 
quantity. The equilibrium of the chain is characterized by r, = AIJN. The total equilibrium 
energy as a function of AI has a minimum at A1 = 0. 

Besides translational invariance, the Lagrangian (3.4) shows a scale symmetry, which 
will be exploited throughout the remainder of this paper. Consider the transformation 

1' = eul2t qA(t') = q d )  + nu (3.5) 

where U is an arbitrary real parameter. It affects the equations of motion according to (3.4) 
only by changing Al. since 

L(q , ( f ) ,&( t ) ,  A1) = e'L(qA(z'),qi(t'), AJ') + Al'e'' - AI - N(eD - 1) 
(3.6) 

Note that it is always possible to transform the Lagrangian into a symmetric form by 
choosing U = - A l / N .  This is presumably the reason why many other authors start their 
calculations with AI = 0. But leaving AI unspecified makes it possible to switch between 
zero-pressure and zero-length boundary conditions at the end of the calculations. This has 
been clearly seen by Sklyanin [191. Also the single cnoidal wave solution (see below) in 
its best known form as originally derived by Toda is a solution of the Toda equations of 
motion for zero pressure rather than for zero length. It does not follow from (3.4) with 
A1 = 0. This led to some confusion in a former article on semiclassical quantization of the 
periodic Toda chain [28]. 

The initial-value problem corresponding to (3.4) has been solved by algebraic-geometric 
methods [5-10]. All solutions are of the same form. They may be understood as 'nonlinear 
superpositions' of cnoidal waves. Apart from an overall constant shift these nonlinear 
superpositions are in a centre-of-mass frame of the form 

Al' := AI + Nu. 

(3.7) 

where B(z1B) is Riemann's theta function of g variables. g = 1.. . . , N - 1 is the genus of 
the Riemann surface constructed from the Riemann matrix B .  For a given g equation (3.7) is 
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said to be the g-cnoidal wave solution (or g-zone solution) of the Toda equation of motion. 
k, U and y are g-dimensional vectors of wavenumbers, frequencies and phases and d is a 
real constant. 

B(zlB) is usually defined in terms of its Fourier representation: 

B(zlB) := exp[ni(n, Bn) + 2rri(n, z)]  (3.8) 
"Gm 

where z E U 3  is a complex vector and B is a complex symmetric g x g matrix with a 
positive definite imaginary part. B is called a Riemann matrix. The diamond brackets 
denote the Euclidean scalar product: {x, y) = E;=, x j y j .  The fact that E is a Riemann 
matrix guarantees the series in (3.8) to be absolutely convergent. 

For later convenience we introduce a slight generalization of (3.8). Theta functions with 
characteriztics [a, 61 will be defined as 

era, ~ I ( Z I B )  := exp(ni(n +a, ~ ( n  +a)) + k i ( n  + a, z + ~ 3 ) ) .  (3.9) 

Here a,p E E@, 0 < aj,pj < 1. For [a ,p]  = [O,O] the Riemann theta function (3.8) 
is obviously recovered. If there is no danger of confusion, we write @[a, p](z) instead of 
B[a, p ] ( z l B ) .  The elementary properties of theta functions as far as we need them in the 
present paper are explained in [ 111. 

The parameters k, U, y. B ,  d in (3.7) are not mutually independent. In [5,7] the authors 
show that they are uniquely determined by the initial conditions. It is possible to determine 
their explicit mutual dependence by reinserting the solution (3.7) into the equations of 
motions. As a result a set of algebraic relations between the parameters is obtained which 
we call the dispersion relations of the multi-cnoidal waves. The corresponding relations 
for the KdV equation were derived by Dubrovin [ 111. He also indicated the result for the 
Toda chain. Since it is necessary in our context to identify the physical meaning of the 
parameters in the dispersion relations, we present a brief derivation. We only show that the 
dispersion relations to be derived are sufficient for (3.7) to solve the equations of motion. 
This will be possible without reverting to methods of algebraic geometry. 

"Gm 

Let A be defined as A :=e&, and 

fn := -d: In(e(ol,d + Ae(.p.+l)e(p~-l)/e*(~") (3.10) 

where pn := nk - u t  + y .  Inserting q,, according to (3.7) into the equations of motion 
following from (3.4) we obtain f.+l - f, = 0. This is obviously true iff. is a constant f. 
Then equation (3.10) is equivalent to 

e-(9n-9n-I) - 1 = d fln(e(vn)) + f - 1. (3.11) 

From this equation we can understand the physical meaning of f. The left-hand side 
represents the force exerted on the nth spring. We assume all frequencies U to be real. 
Then d, In(s(ol,)) is bounded as a function of t ,  and the time-averaged force exerted on 
each spring is 

(3.12) 

We call p the pressure. Note that according to our definition it may be negative. It is easy 
to see that under a scale transformation of type (3.5) f is transformed into f' = e-"f. 
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We introduce the abbreviation Oij,,.(z) := @ / a z j ) ( a / a z j ) .  . . e ( z ) ,  and obtain from (3.10) 

f@(vd + vt@(vd@;j(vd - Vivjei(v&'j(vn) - A@(vn+Mvn-~)  = 0 (3.13) 

where we agree to sum over double indices. Equation (3.13) yields the desired dispersion 
relations by the use of an appropriate addition theorem for theta functions. This is explained 
in appendix A. Using the same abbreviations as in [ 1 I], 

B ^ [ s ] ( z )  := e[& OI(ZIZB) &SI := 8[si(o) (3.14) 

and denoting partial derivatives of the theta functions again by subscripts we eventually 
arrive at the desired result 

f t?[S]  + 2 ~ i ~ j 6 i j [ S ]  - Ae [̂S](Zk) = 0. (3.15) 

Here 6 E i ( Z z ) t .  i.e. S is a g-dimensional column with entries 0, 4. Equation (3.15) was 
first given by Dubrovin (see equation (26) in the appendix of [ll]). Note that the phase y 
in (3.7) does not occur in (3.15) and can therefore be chosen independently. 

So far nothing has been said about the restrictions imposed on k by the quasi-periodic 
boundary condition qn+N - qn = AZ. With qn accordiig to (3.7) it reads 

(3.16) 

This is always hue, if 
(i) Nk is a quasi-period of the theta function, i.e. Nk = j + BZ, j ,  Z E Zg; and 
(ii) N d  = AI. 
The second condition determines A as a function of the outer parameter Al. We claim 

that the first condition can be restricted further to kj = m j / N ,  where mj is one of the 
numbers 1, . . . , N - 1, and all mj are different. This restricb the maximum number of 
cnoidal waves to be superposed in (3.7) to N - 1. The manifold of all physically relevant 
solutions should be exhausted by solutions of this type. We cannot prove our claim, but at 
least it is valid for the special examples considered in the remainder of the present paper. 
It is also valid in the harmonic limit, which is obtained from (3.7), (3.15) considering all 
the amplitudes exp(inBjj) to be small. 

Regarding (3.7) and (3.15) we can interpret the scale transformation (3.5) as acting on 
U instead of 2. U is transformed into v' = e-=l2u and A into A' = e-"A. The Riemann 
manix is invariant under the above transformation, B' = E. Thus the effect of a scale 
transformation on (3.15) is simply to multiply the whole equation by a factor of e-". For 
this reason we can restrict ourselves to the solution for f = 1 corresponding to the boundary 
condition of zero pressure. The boundary condition where A1 is treated as independent is 
obtained subsequently with the aid of a scale transformation. Thus, from this point of view, 
our main object of interest will be the equation 

6 [ 6 ]  + 2 ~ i ~ j $ [ S ]  - AB[S](Zk) = 0. (3.17) 

Let us denote the length AI that follows fiom (3.17) by Alo. For the frequencies at 
zero pressure following from (3.17) we keep the notation U. As indicated above, a scale 
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transformation with U = (A1 - AZo)/N yields the pressure and the frequencies as functions 
of Al: 

p(A1) = exp(-(A1 - Alo)/N) - 1 

u(AI) = exp(-(Al - AIo)/2N). 

(3.18) 

(3.19) 

Note that in our notation U = u(Al0). 
For g = 1 equation (3.17) is a system of two equations for the two unknown parameters 

U, A. For g = 2 we have four equations for four unknown parameters V I ,  vz, A, BIZ. For all 
higher genera g 3 the number of equations exceeds the number of unknown parameters 
(see [ll]). The superfluous equations establish a set of identities on the parameters. The 
case g = 3 has been studied numerically by Hirota and It0 [40]. but they used a different 
form of the dispersion relation (3.17) which is not appropriate for analytical calculations. 

In the remainder of this paper we restrict ourselves to the cases g = 1.2. The case 
g = 1 is investigated in the following section, where we recover the well known dispersion 
relation for a single cnoidal wave. In section 5 we investigate the case g = 2 in order to 
solve the linear stability problem for a single cnoidal wave. 

There is a remark on equation (3.10): if we considered 0 as an unknown function to 
be determined by the differential equation (3.10), then this differential equation would be 
called Hirota’s form of the Tcda equations of motion 1411. 

4. The single cnoidal wave solution 

The purpose of this section is to calculate the physical quantities that characterize a single 
cnoidal wave and enter into the semiclassical quantization formulae (2.6), (2.7). Some of the 
results are well known, but we re-derive them in our formulation, starting from the general 
formula (3.17). This is a check for (3.17) and simultaneously yields some interesting new 
expressions for U and A. At the end of this section we discuss the stationary phase condition 
emerging from semiclassical quantization. 

Equation (3.17) with g = 1 is linear in the two unknown parameters A and w2. To show 
that w Z  and A according to (3.17) agree with the familiar results due to Toda [l] we have 
to express our formulae in terms of Jacobi elliptic functions and complete elliptic integrals. 
To this end we introduce the four basic one-dimensional theta functions 

e l ( m  := -e[ ; ,  ; i ( m  

e 3 ( m  := 810, OKZIB) 

e z ( m  :=e[;,oi(zib 
e 4 ( m  :=e~o, ;KZIB). 

(4.1) 

The Riemann matrix B is now a single constant. Since it is fixed we leave it out of the 
argument of the theta functions in the following. In this section, unlike in the previous one, 
a subscript is the number according to (4.1). Derivatives with respect to z are denoted by a 
prime, and the argument zero is left out for theta functions and its derivatives. For example, 
0; means d2e~(z)/dz21,=o. 

For g = 1 the parameter 6 in (3.17) takes on the values 0, ;. Thus (remember (3.14~)) 
(3.17) in matrix notation becomes 
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We invert this equation and obtain the following explicit expressions for v2 and A 

(4.4) 

Remember the definition of the Jacobi sn function in terms of theta functions (see [42], for 
example) 

(4.5) 

where 2K := ~ 8 :  is a half period of the sn function. K is the complete elliptic integral of 
the first kind (see 1421). First of all we express &2z) and &(2z) in terms of 8,(z), 84(z). 
We start with the following addition theorem for theta functions with characteristics [I I] 

(4.6) 

which has also been the starting point for deriving (3.17) in appendix A. From (3.9) we see 
that for all n, m E D 

8[a + m,  j3 + nKz) = exp(2xih or))8lu, Bl(z). (4.7) 

Using (4.6) and (4.7) we get 

81(z + W ) ~ I ( Z  - W) = &(2Z)&(2W) - &(2Z)&(2W) (4.8) 

84(z + ~ ) 8 4 ( ~  - W )  & ( 2 ~ ) & ( 2 ~ )  - & ( 2 ~ ) & ( 2 ~ ) .  (4.9) 

Setting z, w equal to zero in the last equation, one is led to 

82 4 - 6 2  - 3 - 0 2 .  -2 (4.10) 

Next, we take the second derivative of (4.8) and (4.9) with respect to z at w = z = 0. 
Exploiting the fact that 81(z) is odd and 84(z) is even we obtain 

8: = 2(t?t62 - @&) = 2(6;63 - @&). (4.1 1) 

With w = 0, equations (4.8), (4.9) read 

(4.12) 

Inverting this equation, inserting the result into (4.3) and using (4.10) and (4.11), we arrive 
at 

(4.13) 
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This is an alternative form of the dispersion relation for U. Using (4.5) and the relations 
[42,43] 0; = ~SzO3e4 and 

(4.14) 

equation (4.13) can be rewritten to Toda’s familiar result 

(2Ku)-’ = sn-’(2Kk) - 1 + E I K .  (4.15) 

Here E is the elliptic integral of the second kind. 
Equation (4.8) can also be exploited to derive an expression for the dispersion relation 

only in terms of &(z) .  The numerator of the fraction on the right-hand side of (4.3) equals 
(4.8) with z = 0, w = k; the denominator is obtained taking the second derivative of (4.8) 
with respect to z at z = 0, w = k. So we see that 

U-’ = -di In(61 (k)). (4.16) 

This is already the fourth expression for the dispersion relation for U as a function of B 
and k at zero pressure that we encounter in the course of the present section. Because of 
its simplicity, we prefer to use it in the follovhg. 

It is now very easy to also recover Toda’s formula for A from (4.4). One just needs 
(4 .11~)  and the first of the formulae (4.12) to see that 

u’/A = e?(k)/e:. (4.17) 

Toda uses the constant 

C = (?>’ [ 1 - (1  - :) snZ(2Kk)] (4.18) 

to express the pressure for zero elongation of the chain as p(4l = 0) = C - 1. Thus, 
according to (3.18), we have to show that C = 1/A. Equation (4.15) implies that 

Cu’ = (e4(k)/2Ke,)Zsn2(2Kk). (4.19) 

This is easily seen to agree with the right-hand side of equation (4.17). With that, our 
justification of (4.3), (4.4) is complete. 

Finally, according to (3.19), equation (4.17) provides us with a simple formula for U at 
fixed Length 4Z: 

u(AZ) = e-A‘JzN@t(k)/Bi. (4.20) 

We choose the positive sign of the square root of the right-hand side of (4.17). because we 
want the frequency u ( 4 l )  to be positive for 0 < k < 1 .  The quantity exp(-Al/2N) is seen 
to be the velocity of sound. 

As two of the main ingredients of the semiclassical quantization of a single cnoidal 
wave, we need its energy and its action per period. These quantities have been calculated 
by Shirafuji [28]. Note however, that his point of view in treating the Toda chain is 
slightly different from ours. He leaves out the attractive part of the potential (3.3) and uses 



7600 F Gohmann et a1 

wsh = exp(-x) - 1 instead. Physically, this means that he understands the Toda chain 
as a one-dimensional gas of mutually repulsive particles, constrained on a ring. Although 
the equations of motion derived from W and W 7 h  are clearly the same, the expressions for 
energy and action per period differ. Also, with Wsh instead of W there is no minimum 
of the energy of the chain at rest as a function of AI, i.e. there exists no physical lattice 
constant. 

In the following we denote the time average by angled brackets. Hence, if a function 
f is periodic with period s = l/u, its time average is given as 

(4.21) 

According to (3.12), p = (-W'(rn)), whereas in Shirafuji's treatment the pressure is 
p h  = (-Wi,,(rn)). With this in mind it is readily seen that the single cnoidal wave (3.7), 
(4.3), (4.4), corresponding to p = 0 in our interpretation, corresponds to Pah = 1. 

Denote the kinetic energy foramoment as T .  Then E = ( E )  = ( T ) + ( V ) ,  with potential 
energy V according to (3.2). For the action we get S = r(Al)(L) = s (Al ) ( (T)  - (V)). 
Equation (3.12) implies 

( V )  = T ( W ( r n ) )  = A1 + N p .  
"=I 

(4.22) 

To compute ( T )  we take 4.. as follows from (3.7) and use the series representation for 
the logarithmic derivative of &(zlB) (see [42] p 489). Then (T) = a/r(Al)', where a is 
defined as 

m 
a = N(2x) 'Ccosech2( i~Bn)s in2(nnk) .  

"=I 
(4.23) 

For p = 0 it follows that 

E =a/? + Ala S = a f t  - SAL,. (4.24) 

E = a/r2(0) + ~p = a/r2(0) + N(eAro" - 1) 

And for AI = 0 we get with p according to (3.18) 

(4.25) 

(4.26) 

In the context of semiclassical quantization it only makes sense to consider the system 
with boundary condition of fixed length Al. This is because the conditions for the vanishing 
of the pressure are different in classical and quantum mechanics. In quantum mechanics 
the zero-point motion of the particles causes an additional contribution to the pressure. It 
is formally possible to quantize the classical p = 0 system, although it is not at all clear 
what the result of such a calculation would mean physically. But this is what Shirafuji [28] 
tries to do in his calculations. He tries to quantize the single cnoidal wave solution for 
p = 0. Moreover, the stationary phase condition he is applying when he is analysing the 
time integral in (2.1) is wrong. This will be explained in the following. 

There is a relation between S and E which is crucial in the context of semiclassical 
quantization and which we will now discuss. Recall from Hamilton-Jacobi theory that, 

s =a/ r (o )  - ~ s ( O ) p  = a/s(O) - Ns(O)(eA'O" - I). 
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given an orbit in configuration space, S is usually understood as a function of starting and 
end points of the orbit q, q', as well as of the flight time T .  We calculated the action per 
period for a family of periodic orbits parametrized by their period T ;  i.e. q and q' agree, 
as well as the corresponding momenta p and p'. By q' := q = q' we denote the common 
starting and end point of a periodic orbit. 

Consider first the case AI = 0. Then T = T(o), S = s(q*(T(o)), q*('c(O)), ~(0)) and 

(4.27) 

where the second equation follows from periodicity [26] and the third one from the 
Hamilton-Jacobi equation. Inserting (4.25), (4.26) yields 

dAlo 
da 

y Z =  -. (4.28) 

Equation (4.28) is a consistency condition connecting E and S. On the other hand, we can 
read it as an alternative form of the dispersion relation for v at zero pressure. It would be 
preferable to have direct proof of (4.28), but we did not find it, except in the single soliton 
limit (see below). However, we checked equation (4.28) numerically, and there is no doubt 
that it is correct. 

In the cases p = 0, Psh = 1, respectively, the relation (4.27) between E and S is no 
longer valid for Shirafuji's choice of potential, Wsh, since the Lagrangian now shows an 
additional dependence on T through Alo. We have 

(4.29) 

With our choice (3.3) of the potential energy W the additional term vanishes identically, 
since 

But with Wsh instead of W we obtain 

(4.29) 

(4.31) 

Inserting (4.30) and (4.24) into (4.29) yields again the consistency condition (4.28). and 
likewise inserting Ssh = a / s  and Esh = a/s2 as well as (4.31) into (4.29). This shows that 
the stationary phase condition (26) in Shirafuji's paper is indeed incorrect The total and the 
partial derivative of S with respect to T disagree in his case. To be consistent one should use 
(4.29) instead of Shirafuji's equation (26). But even if one does so, the physical meaning 
of the result, if used in semiclassical quantization, remains questionable. The appropriate 
boundary condition for quantizing the N-particle system is AI = 0. 
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5. Linear stability analysis for a single cnnidal wave 

In this section we investigate the linear stabilily problem of a single cnoidal wave. As in 
the previous section we first treat the case of zero pressure. The case of arbitrary length is 
obtained subsequently by means of the scale transformation (3.5). 

For a moment we denote the single cnoidal wave according to (3.7) by q;(r). Its 
dispersion relation is given by (4.3). (4.4) or one of the alternative forms which have been 
derived in the previous section. The dynamics of a deviation 6qn(f) from q;(t) is given to 
linear order by the equations of motion 

8 i a  = -(aq, - ~ q ~ - ~ ) = - ( q ~ ( ~ ) - q ~ - l ( ~ ) )  + ( ~ q , + ~  - ~qn)e+C+t(0-d(~)) (5.1) 

which define the linear stability problem of q,*(t). With Sp := S q  they may be written as 

(5.2) 

where we have combined the N components 6q, and Sp, to column vectors Sq and 
Sp, respectively. A(?) is a 2N x 2N matrix, periodic in t with period r = l /u,  
i.e. (5.2) is a system of 2N linear non-autonomous differential equations with periodic 
coefficients. Therefore Floquet’s theorem applies (see [44],  for example) and there is a 
special fundamental solution to (5.2) of the form 

@ ( t )  = n(t)e” (5.3) 

where @(t),  n(t), J are 2N x 2N matrices, n(t + r) = n(t) and J is a time-independent 
matrix of Jordan normal form. Since the Toda chain is a Hamiltonian system, the eigenvalues 
of J must come in complex conjugated pairs, and at least one pair is equal to zero due to 
the time independence of the Hamiltonian. Suppose that all non-zero eigenvalues iq& of 
J are pairwise distinct. Then the corresponding solutions are of the form 

= na(t)ei“*’” (5.4) 

where Q C ( r ) ,  n,(t) are the rvth columns of the mahices Q(t), n(I), respectively. qu is 
called a stability angle. If qa is real, is bounded and the cnoidal wave is stable against 
the corresponding perturbation in phase space. 

In the present case it is not hard to derive the complete solution of the linear stability 
problem. It is obtained expanding the two-cnoidal wave solution to linear order in the 
amplitude of one of the cnoidal waves. For the two-cnoidal wave solution the Riemann 
matrix B is a two-by-two matrix and lo. is a two-dimensional vector with components 
p; = nkj - ujr + yj ,  j = 1,2. We abbreviate E := exp(irr&z), K := B I Z .  Then we expand 
(3.7) as well as (3.17) to linear order in E. 

From (3.7) we obtain 

where cc stands for complex conjugate. Here we have supposed B to be purely imaginary 
and k, U and y to be real. Equation (5.5) has already been derived by Shuafuji 1281. 
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The dispersion relations (3.17) for two cnoidal waves are no longer linear in the four 
dependent parameten ut. uz, K ,  A. They are transcendent with respect to K. We introduce 
the notation 

I 
6' := C) 62 := ( b )  63 := (i) S4 := (3 

and write (3.17) in full as 

The theta functions in the first two rows of (5.6), when expanded with respect to E,  yield 
@[8'](z)  = e^[S{](zj) + O(&. This means that the upper left-hand quarter of the matrix 
in (5.6) agrees up to terms of order E' with the matrix in (4.2) and the upper right-hand 
quarter of the matrix in (5.6) is of order e2. Thus we have shown that the terms in curly 
brackets in equation (5.5) are indeed a solution to the Linear stability problem (5.1). The 
second two rows of equation (5.6) may be expanded as functions of &'D. To lowest order 
we obtain a pair of equations that provides us with the dependent parameters K, uz of the 
linear stability problem as functions of kt ,  kz and &I. To avoid factors of JC we rescale kz 
and UZ, setting qz = 2ak2, w2 = k u z ,  and arrive at 

A(eihe^j(2kl + K) + e-"e ĵ(2kl - K ) )  - 4U:ê y(K) - 4iU1W$,!(K) + w@j(K) = 2e ĵ(K) 

( j  = 2.3). (5.7) 

Here A and V I  must be considered as known functions of Bll and kl ,  given by (4.3) and 
(4.4). A more convenient form of (5.7) is obtained if we solve it for 02: 

@ = 2iq dx In(Gj(~)) 

( j  = 2,3). (5.8) 

If we subtract these two equations from each other, we are left with a single equation for 
K. Unfortunately. we have not been able to solve it analytically except for the cases of the 
one-soliton Limit (see below) and the harmonic limit. On the other hand, however, it is not 
hard to solve it numerically. Then K is obtained as a function of kl, 42 and 811. Reinserting 
it in one of the equations (5.8) we obtain the dispersion relation which determines the 
frequency y as a function of the wavenurnber q2 for an excitation with small amplitude 
in the presence of a cnoidal wave characterized by kl and 811. For vanishing amplitude 
exp(inBI1) -+ 0+, equation (5.8) (with j = 3) tums into the dispersion relation of a 
harmonic wave, y + 21 sin(q~/2)1, if we choose the plus sign in equation (5.8). This is 
what we would have expected. 

Because of the linearity of the equations of motion (5.1). not only the whole expression 
in curly brackets in (5.5) is a solution, but already its first part, 

(5.9) 
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Clearly, this has to be complemented by equation (5.8). We compare equations (5.9) and 
(5.4) and see that the stability angles are given as 

v = W Z / V l .  (5.10) 

Hence, dividing (5.8) by V I  yields directly a pair of equations for the stability angles. For 
each value of 42 = Z n j / N  ( j  = I , .  . . , N - 1, (12 # 2 n k l )  we get a stability angle 71, as 
we see explicitly in the harmonic and one-soliton limits. Since the complex conjugate of 
(5.9) is also a linear independent solution to (5.1). we have a total number of 2N - 4 linear 
independent solutions that follow from (5.8) and (5.9). For 42 = 0 it is easily seen that 
u2 = K = 0 is a solution of (5.8) for all values of kl and &I. But the right-hand side of 
(5.9) with 42 = 02 = K = 0 is equal to zero and thus does not give a non-hivial solution 
to the linear stability problem. An analogous statement is me for kt = kz. 

For the sake of completeness we indicate two pais  of linear independent solutions to 
(5.1) that correspond to zero stability angle. One is the translational mode 6q,(t) = CI fqf; 
another one is obtained for example by differentiating the single cnoidal wave solution with 
respect to its phase y and its parameter E ,  respectively. 

In the case of arbitrary length Ai the frequencies U,,% change according to 
equation (3.19). But the stability angles remain unchanged, being the ratio of the two 
frequencies. 

6. Soliton limit of a single cnoidal wave 

In our understanding a soliton is a concept which is generically associated with the infinite 
chain. It corresponds to the discrete part of the spectrum of the inverse scattering transform. 
We avoid speaking of ‘a soliton under cyclic boundary conditions’, as for instance Toda 
[45] does when he means a cnoidal wave consisting of a single peak (k = I / N ) .  As Boyd 
[46] pointed out, such an object has phonon- or soliton-like properties, depending on the 
value of the parameter B .  However, in a certain limit, such a cnoidal wave huns into the 
soliton of the infinite chain. In this l i t  we will compute all the physical quantities which 
describe the cnoidal wave and which have been derived in the preceding sections. In this 
connection it seems inevitable to go again briefly through some well known results. We 
explain for instance how to obtain the shape of a soliton from a cnoidal wave and what is 
happening with the frequencies U, u(0) and with the length A(, 1451. ’Ibis is done for the 
sake of completeness and also to give the reader an idea of how to proceed in the more. 
complex cases when we compute the soliton limit of the linear stability problem and of the 
sum over the stability angles. The latter is crucial for semiclassical quantization. 

We would like to remind the reader that the periodic chain in the soliton limit is not 
fully equivalent to the infinite chain bearing a soliton (see [45]). For example, a cnoidal 
wave at zero pressure stretches the chain by an amount Ah > 0 even in the soliton limit, 
but the soliton on the infinite chain compresses the chain. Furthennore, the periodic chain 
with a cnoidal wave of the form (3.7) always has zero momentum [45], whereas the infinite 
chain bearing a soliton has not [I]. 

The one-soliton limit is obtained as follows. We want to keep only a single peak and 
thus set k = 1 / N .  We would also like to reach the limit where all occumng elliptic functions 
are degenerate. These two claims will be fulfilled consistently if we set ni /B = U N ,  where 
a > 0 will turn out to be the soliton parameter. Ws further have to replace the phase y in 
(0, by 1 f y / u N ,  where the new y is again arbitrary. This means we have to use &(z1B) 
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instead of 6’3(21B) to obtain the soliton limit of the equations (3.7) and (5.5). After these 
substitutions the respective expressions under consideration are expanded for large N. 

To start with, consider equations (4.16) and (4.20). With the aid of the formulae @.3), 
(B.2) from appendix B, we obtain 

sinh(0r) 
N v = -  

O1 

Nu(O) = - sinh(4 ( 1 - - + U  ; (i2)) - . n 

Inserting these two equations into (4.20) and (4.17), we are provided with the expression 

A = 1 - 2[sinh2(or) - O~~)/CXN + o(~/N*).  (6.3) 

Thus, in the soliton limit, A10 is given as 

A10 = -N In(A) -+ 2(sinh2(or) - d ) / n  (6.4) 

which is always a positive number. To obtain the soliton limit of the energy and of the 
action per particle we still have to consider the constant a in (4.23). In the soliton l i t  the 
right-hand side of (4.23) is equal to 

m 
a / N Z  -+ 4 z  1 dx cosech2(irx/ol) sinz(x) = 2(n2coth(a) - 0 1 ) .  (6.5) 

Using this equation, as well as (6.4) and (6.1) or (6.2), respectively, we get the desired 
result. Note that, like the frequencies (6.1), (6.2), energy and action per particle agree to 
leading order in the cases of zero pressure and zero length: 

E = 2(cosb(a) sinh(n) - 01) 

In the soliton limit we aTe also able to verify equation (4.28) to leading order in N: 

S I N  = 201 cosh(@ - 4 sinh(a) + h2/ sinh(rr). (6.6) 

d h k  d(sinh2(ol) - a2)/or sinh2(or) ( N U ) ~  = - =- 
d(a/N2) --f d(olzcoth(n) - 0 1 )  012 

and thus dS/dT = -E. 
Equations (6.1) and (6.2) show that for p = 0 as well as for A1 = 0 

(6.7) 

p “ - 2  - 1 + (nn - sinh[n)t + y)/01N + U(l/Nz). (6.8) 

We define $,, := nn - sinh(or)t + y and use the first of the equations (B.1) to see that 

to leading order in N. Note that the constant 01 can be absorbed into q.(t). Thus the right- 
hand side of (6.9) is identified as the well known soliton solution for the infinite chain. 
Recall the meaning of the constant d on the left-hand side. In the case AI = 0 it is equal to 
zero. But for zero pressure it is the change of the lattice constant d = Alo/N and therefore 
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nd has no definite soliton limit, since n ranges from 1 to N. On the other hand, since d 
vanishes as N --f 03, we get a meaningful result even in the case of zero pressure, if we 
look only at the relative motion. Then 

(6.10) 

which is the most familiar form of the Toda soliton. 
At this point we emphasize the following: the energy and the action per particle can 

of course be calculated directly for the infinite chain (for the energy see [I]). But since 
the infinite chain and the periodic chain in the thermodynamic limit are physically different 
systems, there is no natural reason why the energy and the action per particle should agree 
in the two cases. Indeed they do for OUT choice of the potential (3.3), but they do not for 
Shirafuji’s potential in the case Psh = 1. If we calculate the energy Esh in the soliton 
limit and compare it with the energy calculated diractly for the infinite chain with W s ~ ,  we 
see that the two results disagree by an amount 2sinh2(a)/a. 

Let us now determine the stability angles following from (5.8) up to terms of the order 
of I / N .  The required calculations are quite tedious. We will therefore only give a brief 
description how to proceed. First we have to calculate the coupling K to leading order. To 
this end we eliminate o from (5.8) by subtracting the two equations from each other and 
we are left with an equation for K alone. We introduce the abbreviation 

KI := 2iffN~.  (6.11) 

For all logarithmic derivatives and all quotients of theta functions occurring in (5.8) we use 
the representations according to appendix B. The leading terms in the equation for K I  are 
of the order exp(-aN/2). The factors exp(-01N/2) cancel out and the remaining equation 
yields to leading order 

(6.12) 

Thus K I  agrees with the phase shift that a nonlinear phonon suffers due to a soliton [47]. 
Logarithms must be taken carefully in (6.12), since the solution is not unique. We stipulate 
K I  to be continuous as a function of 42 for 0 < q2 < 2x, and to vanish as 01 -+ 0 for 
0 < 42 4 2x. Thus we get 

tall(Kl/4) = -bIlh(Or/2) COt(@/4) 0 < 4 4 2R. (6.13) 

With that, we are prepared to calculate w2. Inserting (6.1). (6.3), (6.11) and (6.13) into one 
of the equations (5.8) we arrive at 

(6.14) 

We see that in the soliton limit wz turns into the frequency of a harmonic excitation. This 
is due to the fact that a soliton is a localized object. The I j N  corrections to y contain the 
semiclassical corrections to classical energy and momentum of the soliton (see the following 
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section). Using (6.8), (6.1 1) and (5.9) we obtain the solutions of the linear stability problem 
in the soliton limit, 

Here 0~ = 2sin(ql/2) and U ,  is given by equation (6.13). It is merely a matter of patience 
to substitute (6.15) directly into (5.1) with exp(-(q;+! - 4:)) given by (6.10). and to see 
that it is indeed a solution. It would have been possible and also much easier to obtain 
(6.15) by the method that the authors of [47] used to get the phonon phase shifts due to a 
soliton. But, unfomnately, this method does not yield the 1/N corrections to the frequency 
WL. 

7. Main mulls and discussion 

In this section we gather all the information about the classical periodic Toda chain which we 
have obtained in the preceding sections and insert them into the semiclassical quantization 
formulae (2.6), (2.7). 

In the case of the finite chain we cannot go analytically beyond (5.8). For the physically 
most appropriate boundary condition, AI = 0, we take energy and action per particle 
according to equations (4.25) and (4.26). The sum over stability angles is obtained from 
(5.8) and (5.10). Thus the right-hand sides of equations (2.6) and (2.7) are completely 
specified. There remains a single unknown quantiv, v ,  which can take on the values 0, a,  
i, a. By comparison with the harmonic limit it turns out that U = 1. It seems noteworthy 
that, in the equations for the spectrum, the number of particles N IS merely playing the 
role of a parameter. This means that the numerical effort to compute the spectrum does not 
increase with increasing number of particles. 

We think that our results are a good test for the method in general. In a forthcoming 
publication [31] which is now in preparation they will be compared numerically to the 
results obtained by Gutzwiller's exact quantization of the three- and four-particle chains 
[15-171, as well as to the results of direct numerical methods [21,22]. Furthermore, it 
seems quite interesting to compare OUT result with the result arising from EBK quantization, 
which in the case of the periodic Toda chain has been considered in [ I S ,  211. First numerical 
calculations for the three-particle chain show that the semiclassical energy levels obtained 
with the quantization procedure of section 2 differ from the EBK results. Moreover, the 
quantization formulae (2.6) and (2.7) break the discrete symmetries of the Hamiltonian 
which have recently been shown explicitly to be conserved by EBK quantization [48]. On 
the other hand, the ground-state levels for the three- and four-particle chains are obtained 
more accurately than with the EBK method. 

We now discuss the soliton limit. With the aid of the formulae (6.1). (6.6), (6.13) 
and (6.14) we are prepared to calculate the semiclassically corrected dispersion relation 
E = E ( p )  for a soliton on the infinite chain, as explained in section 2. The details of 
the calculation are presented in appendix C. The following parametric representation of the 
semiclassically corrected dispersion relation for 01 = 0 is obtained 

2 '. 

E = E - Z U / Z  (7.1) 
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- 

a 
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semiclassical result is in almost absolute agreement with the Bethe ansatz result even in 
the full quantum mechanical regime h = 1. and in this regime it is quite different from 
the variational-approach result. Figure 2 shows the remarkable fact that the semiclassical 
dispersion relation is still in good agreement with the one from Bethe ansatz even if fi = 10; 
that is, even if h is two orders of magnitude larger than the value for which the semiclassical 
approximation is suspected to be applicable. 

The important thing about our results as far as they concern the soliton dispersion curve 
is that our intuitive picture of a soliton as a particle over a vacuum state, which leads us to 
the definition of the semiclassical momentum, is consistent with the Bethe ansatz. Therefore 
the two very different approaches support each other. This is of some importance, for all 
soliton dispersion curves as they are shown in figure 1 contain the soliton momentum as a 
phenomenological concept. This is especially true for the momentum obtained from Bethe's 
ansatz by analogy to the 8-function Bose gas. 

Let us finally remark that the semiclassical dispersion relation may be computed with 
arbiaary lattice constant d = A l / N  and thus also at zero pressure. This will be explained 
in appendix D. 
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Appendix A. Dispersion relations 

To derive the dispersion relations (3.17) we use the same formalism as Dubrovin in his work 
on the K ~ V  equation (see 1111, ch 4). The starting point of this calculation is equation (3.13) 
with f = 1 and z instead of qn: 

e Z ( z )  + v iv je (z )e i j ( z )  - vivjei(z)e,(z) - Ae(z + k)e(z - k) = 0. (AJ) 

We define the infinitesimal shift operator Tz := w j a p z j  and the finite shift operator S, by 
S, j ( z )  = f ( z  +k). Then the inverse of S, is given by S ; ' j ( z )  = f(z -k) and (A.l) reads 

(-4.2) (1 + T,: - T , ~ T , ~  - As,,s,;')e(z')e(z2)iz,=~~ = 0. 

We now introduce new coordinates 

64.3) 
1 1  

In these new coordinates (A.2) turns into 

(1 + 2TWiTwz +2T$ - AS$)O(i(w' + w2))8(f(tu' - w*))lw.=o = 0. 

For the Riemann theta function the addition theorem (4.6) reads 

64.4) 
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(see section 3 for the notation). e^[~l(z) is an even function for all s E $(ZZ)E =+ 
T,B̂ [GJ(z)[,,o = 0. Also, equation (A.4) implies 

Since all the functions 4[61(w) are linear independent (see [Ill) 
(1 + 2T: - AS~)ê [Sl(w)lu,o = 0. (A.7) 

This is the desired result (3.17). 

Appendix B. Series representations for the sotiton limit 

The Fourier representation (3.9) of a theta function with characteriztic [a, 81 is not the 
only possible representation. In fact, there is a whole transformation theory dealing with 
the various equivalent representations of theta functions (see [11] and the literature cited 
therein). As Boyd 149,501 pointed out and elaborated in case of the KCIV equation, one 
of these representations is especially convenient to perform the soliton limit of a multi- 
cnoidal wave. It is called the Gaussian representation and is simply obtained by Poisson 
resummation [l] of the Fourier series (3.9). i.e. 

e[a, @](zlB) = (det(-iB))-'/'C exp(-zi(n + ,6 +z, B-'(n + 0 + z)) - &i(n,a)} 
n a g  

= (det(-iB))-'"exp(-rri(z, B-lz) + 2ni(a, ,9)10[,9, -aI(-B-'zI - B-' ) .  

(B.1) 
This is valid at least if iB is real. For our purposes we only need to consider one-dimensional 
theta functions. Then (B.l) is the same as what is called Jacobi's imaginary transformation 
(see [421, p 474). 

Many of the formulae that we study in the soliton limit contain logarithmic derivatives 
of theta functions instead of theta functions. For these it will prove to be convenient to 
derive certain series representations. Equation (B.1) implies 

On the right-hand side of (B.2) we again have a logarithmic derivative. So we can use 
some well known formulae (see 1421 p 498, for instance) which yield for the four basic 
theta fun&ons (4.1) 
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Appendix C. Semiclassically corrected dispersion relation 

Starting with (2.6) and (2.7) we calculate the semiclassically corrected dispersion relation 
E = E ( p )  of a soliton on a chain of fixed length AI = 0. In order to keep the energies 
in (2.6) finite in this limit we must subtract the vacuum energy: E + E - E, h sin(q/Z). 
Since the soliton limits of E and (S+ Er(O))/N have already been calculated (6.1). (6.6), 
we only have to determine a,,,$ t A E, sin(qz/2) and (1 - t(O)d,(o))t/N in the soliton 
limit. From (6.1) we obtain 

and, further, from (6.2) and (6.14) we obtain, up to terms of the order of 1/N2, 

It thus follows that 

with KI according to (6.13). We abbreviats the sum on the right-hand side as Z and denote 
the derivative with respect to a by a prime. It follows that 

h h a sinh(a) 
4 n  (1 - t(o)d~(o))f/N = --E -!- - , 4n smh(a) - a cosh@) (C.5) 

In the soliton limit the sums E and C' are replaced by integrals with 0 , k  as limits of 
integration. Using the relations 

(C.6) 
2sin(qz/2) - a K 1  = sinh(a) 

sinh(w) aqz cosh(a) - C O S ( ~ Z / ~ )  

E' is calculated by integrating by parts. 

Z follows from integration with respect to a. Regarding the original integral representation 
for C as an integral over @. the integration constant is seen to be zero. In summary we 
have obtained 

(C.8)  
Tior 

-dr& -RCsin(qz/2) = -- =: A E  n 
qz 

Using these equations, as well as (6.6), we arrive at (7.1). (7.2). 
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Appendix D. The cases of arbitrary length and zero pressure 

We consider a finite dilation d = Al/N of the chain. Then according to (4.20) 

U(AZ) = e-dJ%(0). 0 1 )  

The energy turns out to be (see (4.22) and below) 

E(A1) = av2(A1) + AI + Np 
= e-d(au2(0) + N(eAfolN - 1)) + N(eFd + d  - 1) 
= e-dE(0) + EO (D.2) 

where E(0) is the energy in the case AI = 0 according to (4.25), and Eo := N(e-d +d - 1) 
is the classical ground-state energy. Equation (D.1) further implies that 

&(Ai) = e-d12d,(o) t(Al)'%(Af) = r(o)&(o). (D.3) 

Since 6 is invariant under scale transformations, it follows that 

E = eWdE(O) + Eo - ed/'d&. (D.4) 

Hence in this case the proper renormalization of E in the soliton l i t  is achieved by the 
replacement 

E ---t E - Eo - e-dp E h  sin(q/2). (D.5) 

Because of the second equation (D.3) the second term on the right-hand side of equation (2.7) 
stays invariant under scale transformations. Conceming the first term, we obtain (see (4.22) 
and below) 

.7 

S(Al) + E(Al)r(Al) = 2au(AI) = e-d/22au(0) 
= e-d/2(S(0) + E(O)r(O)). (D.6) 

This means that the semiclassically corrected dispersion relation for arbitrary d is given as 

0 . 7 )  

0.8) 
where E and pc, are classical soliton energy and momentum according to (7.3), and AE, 
Ap are the corrections as calculated in the previous appendix. 

The vacuum state according to (D.7), (D.8) is characterized by E = p = 0. Regarding 
(D.5) we see that in the thermodynamic limit the ground-state energy per particle approaches 

E = eMdE + ed12AE 

p = e-dlzp,l + Ap 

2h 
EO = e-d + d - 1 + -e-'/'. 

7r 

The zero-pressure lattice constant d is now determined by stipulating EO to be minimal. 
With g := h/2n it turns out to be 

(D.lO) 

Note that 
variational approach [30]. 

agrees to linear order in h with the corresponding quantity obtained from the 
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